Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-9, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047446

RESUMO

In this study, the effect of baffle configuration on the water disinfection efficiency of a planar photoreactor equipped with ultraviolet C light-emitting diodes (UV-C LEDs) was investigated. The results indicated that the configuration of the baffles influenced the hydrodynamics inside the flow channel and thus affected the microbial trajectory, and exposure time. Accordingly, a modified serpentine configuration was developed to enhance the UV light exposure of microbes in water and improve the reactor performance for microbial inactivation. According to the simulation results, the quarter-circle baffles used in the modified serpentine configuration increased the microbial path length along the flow channel. However, because the cross-sectional area of the flow channel decreased, this configuration increased the water velocity. A modified serpentine configuration with a baffle radius of 5 mm achieved the longest microbial exposure time and highest inactivation value for Escherichia coli. At a water flow rate of 160 mL/min, this configuration achieved a UV fluence of 15.2 mJ/cm2 and an inactivation value of 3.8 log, which were approximately 22% and 0.4 log higher than those obtained with the traditional serpentine configuration, respectively. In addition, the maximum water flow rate at which the UV reactor achieved an inactivation value of 4.0 log was 154 mL/min at a baffle radius of 5 mm. This flow rate was 11.5% higher than that obtained with the traditional serpentine configuration. These close agreements between the experimental and simulation results confirmed the strong capability of the proposed modified serpentine configuration to improve reactor performance.

2.
Environ Technol ; 44(22): 3405-3414, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35324415

RESUMO

The use of ultraviolet-C (UV-C) light-emitting diodes (LEDs) as a water sterilization light source poses a serious challenge in heat dissipation. High junction temperatures reduce the radiant power and lifespan of UV-C LEDs. In this study, a novel self-cooling water disinfection reactor was developed to dissipate Joule heat from UV-C LEDs. The advantage of the self-cooling design is that cooling can be achieved without requiring additional power consumption and cooling liquid. The effects of the water flow rate and driving current of UV-C LEDs on the sterilization of Escherichia coli were investigated for a traditional flow-through reactor and a reactor with self-cooling. The experimental results indicated that an increase in driving current resulted in a considerable increase in the LED temperature of the flow-through reactor but only a marginal increase in the LED temperature of the self-cooling reactor. Under a driving current of 150 mA, the LED temperature of the self-cooling reactor was 55.5°C less than that of the flow-through reactor. The time required by the self-cooling reactor to reach the steady state decreased as the water flow rate increased. Under a flow rate of 100 mL/min, the self-cooling reactor reached the steady state within 62 and 70 s when the driving current was 100 and 150 mA, respectively. Moreover, the average irradiance and inactivation values of the self-cooling reactor were up to 16.5% and 26.0% higher than those of the flow-through reactor, respectively.


Assuntos
Raios Ultravioleta , Purificação da Água , Desinfecção/métodos , Água , Purificação da Água/métodos , Escherichia coli
3.
Nanoscale Res Lett ; 17(1): 5, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985604

RESUMO

An on-wafer micro-detector for in situ EUV (wavelength of 13.5 nm) detection featuring FinFET CMOS compatibility, 1 T pixel and battery-less sensing is demonstrated. Moreover, the detection results can be written in the in-pixel storage node for days, enabling off-line and non-destructive reading. The high spatial resolution micro-detectors can be used to extract the actual parameters of the incident EUV on wafers, including light intensity, exposure time and energy, key to optimization of lithographic processes in 5 nm FinFET technology and beyond.

4.
Small ; 18(5): e2104168, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821034

RESUMO

A multifunctional ion-sensitive floating gate Fin field-effect transistor (ISFGFinFET) for hydrogen and sodium detection is demonstrated. The ISFGFinFET comprises a FGFET and a sensing film, both of which are used to detect and improve sensitivity. The sensitivity of the ISFGFinFET can be adjusted by modulating the coupling effect of the FG. A nanoseaweed structure is fabricated via glancing angle deposition (GLAD) technology to obtain a large sensing area to enhance the sensitivity for hydrogen ion detection. A sensitivity of 266 mV per pH can be obtained using a surface area of 3.28 mm2 . In terms of sodium ion detection, a calix[4]arene sensing film to monitor sodium ions, obtaining a Na+ sensitivity of 432.7 mV per pNa, is used. In addition, the ISFGFinFET demonstrates the functionality of multiple ions detection simultaneously. The sensor arrays composed of 3 × 3 pixels are demonstrated, each of which comprise of an FGFET sensor and a transistor. Furthermore, 16 × 16 arrays with a decoder and other peripheral circuits are constructed and simulated. The performance of the proposed ISFGFinFET is competitive with that of other state-of-the-art ion sensors.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Íons , Tecnologia
5.
Nanoscale Res Lett ; 16(1): 93, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032939

RESUMO

A novel in situ imaging solution and detectors array for the focused electron beam (e-beam) are the first time proposed and demonstrated. The proposed in-tool, on-wafer e-beam detectors array features full FinFET CMOS logic compatibility, compact 2 T pixel structure, fast response, high responsivity, and wide dynamic range. The e-beam imaging pattern and detection results can be further stored in the sensing/storage node without external power supply, enabling off-line electrical reading, which can be used to rapidly provide timely feedback of the key parameters of the e-beam on the projected wafers, including dosage, accelerating energy, and intensity distributions.

6.
Environ Technol ; 42(25): 4038-4046, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32431226

RESUMO

The UV-C light emitting diode (LED) has shown numerous advantages over the traditional UV mercury lamp for water sterilization applications. Multi-chip LED array was used to provide sufficient UV fluence for bacteria inactivation in limited time. According to the point light source characteristic of LEDs, the arrangement of LEDs in the batch reactor is crucial to optimize the inactivation efficiency. In this study, the inactivation of Escherichia coli (E. coli) was investigated using the 280 nm UV-C LED array. Input electrical power, chip interspace (L) and distance (D) between the reactor and water surface were analysed in terms of their effects on the inactivation of the microorganisms. An optimal inactivation efficiency of E. coli was obtained under the condition of L = D=25 mm to reach 4.0 log without using a magnetic stirrer. Additionally, the increasing rate of log inactivation of E. coli decreased with input power due to the significant decrease of wall plug efficiency of the UV-C LEDs.


Assuntos
Desinfecção , Purificação da Água , Escherichia coli , Raios Ultravioleta , Água , Microbiologia da Água
7.
Sensors (Basel) ; 19(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986913

RESUMO

In this work, we present a novel pH sensor using efficient laterally coupled structure enabled by Complementary Metal-Oxide Semiconductor (CMOS) Fin Field-Effect Transistor (FinFET) processes. This new sensor features adjustable sensitivity, wide sensing range, multi-pad sensing capability and compatibility to advanced CMOS technologies. With a self-balanced readout scheme and proposed corresponding circuit, the proposed sensor is found to be easily embedded into integrated circuits (ICs) and expanded into sensors array. To ensure the robustness of this new device, the transient response and noise analysis are performed. In addition, an embedded calibration operation scheme is implemented to prevent the proposed sensing device from the background offset from process variation, providing reliable and stable sensing results.

8.
Dev Dyn ; 247(12): 1264-1275, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358936

RESUMO

BACKGROUND: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. RESULTS: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. CONCLUSIONS: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264-1275, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/citologia , Neuroglia/citologia , Neurônios/citologia , PPAR alfa/fisiologia , Células-Tronco/citologia , Animais , Sistema Nervoso Central/embriologia , Neurogênese , PPAR alfa/deficiência , Peixe-Zebra/embriologia
9.
Appl Opt ; 53(29): H44-50, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25322430

RESUMO

We propose the output power measurement of bare-wafer/chip light-emitting diodes (LEDs) using a large-area silicon (Si) photodiode with a simple structure and high accuracy relative to the conventional partial flux measurement using an integrating sphere. To obtain the optical characteristics of the LED chips measured using the two methods, three-dimensional ray-trace simulations are used to perform the measurement deviations owing to the chip position offset or tilt angle. The ray-tracing simulation results demonstrate that the deviation of light remaining in the integrating sphere is approximately 65% for the vertical LED chip and 53% for the flip-chip LED chip if the measurement distance in partial flux method is set to be 5-40 mm. By contrast, the deviation of light hitting the photodiode is only 15% for the vertical LED chip and 23% for the flip-chip LED chip if the large-area Si photodiode is used to measure the output power with the same measurement distance. As a result, the large-area Si photodiode method practically reduces the output power measurement deviations of the bare-wafer/chip LED, so that a high-accuracy measurement can be achieved in the mass production of the bare-wafer/chip LED without the complicated integrating sphere structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...